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Abstract

This paper tackles the goal of conclusion-supplement answer
generation for non-factoid questions, which is a critical is-
sue in the field of Natural Language Processing (NLP) and
Artificial Intelligence (AI), as users often require supplemen-
tary information before accepting a conclusion. The current
encoder-decoder framework, however, has difficulty gener-
ating such answers, since it may become confused when it
tries to learn several different long answers to the same non-
factoid question. Our solution, called an ensemble network,
goes beyond single short sentences and fuses logically con-
nected conclusion statements and supplementary statements.
It extracts the context from the conclusion decoder’s output
sequence and uses it to create supplementary decoder states
on the basis of an attention mechanism. It also assesses the
closeness of the question encoder’s output sequence and the
separate outputs of the conclusion and supplement decoders
as well as their combination. As a result, it generates answers
that match the questions and have natural-sounding supple-
mentary sequences in line with the context expressed by the
conclusion sequence. Evaluations conducted on datasets in-
cluding “Love Advice” and “Arts & Humanities” categories
indicate that our model outputs much more accurate results
than the tested baseline models do.

Introduction
Question Answering (QA) modules play particularly impor-
tant roles in recent dialog-based Natural Language Under-
standing (NLU) systems, such as Apple’s Siri and Amazon’s
Echo. Users chat with AI systems in natural language to get
the answers they are seeking. QA systems can deal with two
types of question: factoid and non-factoid ones. The former
sort asks, for instance, for the name of a thing or person
such as “What/Who is X?”. The latter sort includes more
diverse questions that cannot be answered by a short fact.
For instance, users may ask for advice on how to make a
long-distance relationship work well or for opinions on pub-
lic issues. Significant progress has been made in answer-
ing factoid questions (Wang, Smith, and Mitamura 2007;
Yu et al. 2014); however, answering non-factoid questions
remains a challenge for QA modules.
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Long short term memory (LSTM) sequence-to-sequence
models (Sutskever, Vinyals, and Le 2014; Vinyals and Le
2015; Bahdanau, Cho, and Bengio 2014) try to generate
short replies to the short utterances often seen in chat sys-
tems. Evaluations have indicated that these models have the
possibility of supporting simple forms of general knowl-
edge QA, e.g. “Is the sky blue or black?”, since they
learn commonly occurring sentences in the training cor-
pus. Recent machine reading comprehension (MRC) meth-
ods (Nguyen et al. 2016; Rajpurkar et al. 2016) try to re-
turn a single short answer to a question by extracting an-
swer spans from the provided passages. Unfortunately, they
may generate unsatisfying answers to regular non-factoid
questions because they can easily become confused when
learning several different long answers to the same non-
factoid question, as pointed out by (Jia and Liang 2017;
Wang et al. 2018).

This paper tackles a new problem: conclusion-supplement
answer generation for non-factoid questions. Here, the con-
clusion consists of sentences that directly answer the ques-
tion, while the supplement consists of information sup-
porting the conclusion, e.g., reasons or examples. Such
conclusion-supplement answers are important for helping
questioners decide their actions, especially in NLU. As de-
scribed in (Ennis 1991), users prefer a supporting supple-
ment before accepting an instruction (i.e., a conclusion).
Good debates also include claims (i.e., conclusions) about a
topic and supplements to support them that will allow users
to reach decisions (Rinott et al. 2015). The following ex-
ample helps to explain how conclusion-supplement answers
are useful to users: “Does separation by a long distance ruin
love?” Current methods tend to answer this question with
short and generic replies, such as, “Distance cannot ruin true
love”. The questioner, however, is not likely to be satisfied
with such a trite answer and will want to know how the
conclusion was reached. If a supplemental statement like
“separations certainly test your love” is presented with the
conclusion, the questioner is more likely to accept the an-
swer and use it to reach a decision. Furthermore, there may
be multiple answers to a non-factoid question. For example,
the following answer is also a potential answer to the ques-
tion: “distance ruins most relationships. You should keep in



contact with him”. The current methods, however, have dif-
ficulty generating such conclusion-supplement answers be-
cause they can become easily confused when they try to
learn several different and long answers to a non-factoid
question.

To address the above problem, we propose a novel archi-
tecture, called the ensemble network. It is an extension of
existing encoder-decoder models, and it generates two types
of decoder output sequence, conclusion and supplement.
It uses two viewpoints for selecting the conclusion state-
ments and supplementary statements. (Viewpoint 1) The
context present in the conclusion decoder’s output is linked
to supplementary-decoder output states on the basis of an at-
tention mechanism. Thus, the context of the conclusion se-
quence directly impacts the decoder states of the supplement
sequences. This, as a result, generates natural-sounding sup-
plementary sequences. (Viewpoint 2) The closeness of the
question sequence and conclusion (or supplement) sequence
as well as the closeness of the question sequence with the
combination of conclusion and supplement sequences is
considered. By assessing the closeness at the sentence level
and sentence-combination level in addition to at the word
level, it can generate answers that include good supple-
mentary sentences following the context of the conclusion.
This avoids having to learn several different conclusion-
supplement answers assigned to a single non-factoid ques-
tion and generating answers whose conclusions and supple-
ments are logically inconsistent with each other.

Community-based QA (CQA) websites tend to provide
answers composed of conclusion and supplementary state-
ments; from our investigation, 77% of non-factoid answers
(love advice) in the Oshiete-goo (https://oshiete.goo.ne.jp)
dataset consist of these two statement types. The same is true
for 82% of the answers in the Yahoo non-factoid dataset1 re-
lated to the fields of social science, society & culture and arts
& humanities. We used the above-mentioned CQA datasets
in our evaluations, since they provide diverse answers given
by many responders. The results showed that our method
outperforms existing ones at generating correct and natural
answers. We also conducted an love advice service2 in Oshi-
ete goo to evaluate the usefulness of our ensemble network.

Related work
The encoder-decoder framework learns how to trans-
form one representation into another. Contextual LSTM
(CLSTM) incorporates contextual features (e.g., topics) into
the encoder-decoder framework (Ghosh et al. 2016; Serban
et al. 2016). It can be used to make the context of the ques-
tion a part of the answer generation process. HieRarchical
Encoder Decoder (HRED) (Serban et al. 2016) extends the
hierarchical recurrent encoder-decoder neural network into
the dialogue domain; each question can be encoded into
a dense context vector, which is used to recurrently de-
code the tokens in the answer sentences. Such sequential
generation of next statement tokens, however, weakens the
original meaning of the first statement (question). Recently,

1https://ciir.cs.umass.edu/downloads/nfL6/
2http://oshiete.goo.ne.jp/ai

several models based on the Transformer (Vaswani et al.
2017), such as for passage ranking (Nogueira et al. 2019;
Liu, Duh, and Gao 2018) and answer selection (Shao et al.
2019), have been proposed to evaluate question-answering
systems. There are, however, few Transformer-based meth-
ods that generate non-factoid answers.

Recent neural answer selection methods for non-factoid
questions (dos Santos et al. 2015; Qiu and Huang 2015;
Tan et al. 2016) learn question and answer representations
and then match them using certain similarity metrics. They
use open datasets stored at CQA sites like Yahoo! Answers
since they include many diverse answers given by many re-
sponders and thus are good sources of non-factoid QA train-
ing data. The above methods, however, can only select and
extract answer sentences, they do not generate them.

Recent machine reading comprehension methods try to
answer a question with exact text spans taken from provided
passages (Yu et al. 2018; Rajpurkar et al. 2016; Yang, Yih,
and Meek 2015; Joshi et al. 2017). Several studies on the
MS-MARCO dataset (Tan et al. 2017; Nguyen et al. 2016;
Wang et al. 2018) define the task as using multiple passages
to answer a question where the words in the answer are not
necessarily present in the passages. Their models, however,
require passages other than QA pairs for both training and
testing. Thus, they cannot be applied to CQA datasets that do
not have such passages. Furthermore, most of the questions
in their datasets only have a single answer. Thus, we think
their purpose is different from ours; generating answers for
non-factoid questions that tend to demand diverse answers.

There are several complex QA tasks such as those present
in the TREC complex interactive QA tasks3 or DUC4 com-
plex QA tasks. Our method can be applied to those non-
factoid datasets if an access fee is paid.

Model
This section describes our conclusion-supplement answer
generation model in detail. An overview of its architecture
is shown in Figure 1.

Given an input question sequence Q =
{q1, · · · ,qi, · · · ,qNq}, the proposal outputs a conclu-
sion sequence C = {c1, · · · , ct, · · · , cNc

}, and supplement
sequence S = {s1, · · · , st, · · · , sNs

}. The goal is to learn a
function mapping from Q to C and S. Here, qi denotes a
one-of-K embedding of the i-th word in an input sequence
of length Nq . ct (st) denotes a one-of-K embedding of the
t-th word in an input sequence of length Nc (Ns).

Encoder
The encoder converts the input Q into a question embed-
ding, Oq , and hidden states, H = {hi}i.

Since the question includes several pieces of background
information on the question, e.g. on the users’ situation, as
well as the question itself, it can be very long and com-
posed of many sentences. For this reason, we use the BiL-
STM encoder, which encodes the question in both direc-
tions, to better capture the overall meaning of the question.

3https://cs.uwaterloo.ca/ jimmylin/ciqa/
4http://www-nlpir.nist.gov/projects/duc/guidelines.html
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Figure 1: Neural conclusion-supplement answer generation model.

It processes both directions of the input, {q1, · · · ,qNq
} and

{qNq
, · · · ,q1}, sequentially. At time step t, the encoder up-

dates the hidden state by:

hi = [hf
i ,h

b
i ]
T s.t.

hf
i = f(qi−1,h

f
i−1),h

b
i = f(qi+1,h

b
i+1),

where f() is an LSTM unit, and hf
i and hb

i are hidden
states output by the forward-direction LSTM and backward-
direction LSTM, respectively.

We also want to reflect sentence-type information such as
conclusion type or supplement type in sequence-to-sequence
learning to better understand the conclusion or supplement
sequences. We achieve this by adding a sentence type vec-
tor for conclusion C or for supplement S to the input gate,
forget gate output gate, and cell memory state in the LSTM
model. This is equivalent to processing a composite input
[qi, C] or [qi, S] in the LSTM cell that concatenates the
word embedding and sentence-type embedding vectors. We
use this modified LSTM in the above BiLSTM model as:

hi = [hf
i ,h

b
i ]
T s.t.

hf
i = f([qi−1,C],hf

i−1),h
b
i = f([qi+1,C],hb

i+1).

When encoding the question to decode the supplement se-
quence, S is input instead of C in the above equation.

The BiLSTM encoder then applies a max-pooling layer to
all hidden vectors to extract the most salient signal for each
word. As a result, it generates a fixed-sized distributed vector
representation for the conclusion, Oc

q , and another for the
supplement, Os

q . Oc
q and Os

q are different since the encoder
is biased by the corresponding sentence-type vector, C or S.

As depicted in Figure 1, the BiLSTM encoder processes
each word with a sentence-type vector (i.e. C or S) and the
max-pooling layer to produce the question embedding Oc

q
or Os

q . These embeddings are used as context vectors in the
decoder network for the conclusion and supplement.

Decoder
The decoder is composed of a conclusion decoder and sup-
plement decoder. Here, let h′

t be the hidden state of the t-
th LSTM unit in the conclusion decoder. Similar to the en-
coder, the decoder also decodes a composite input [ct, C] in
an LSTM cell that concatenates the conclusion word embed-
ding and sentence-type embedding vectors. It is formulated
as follows:

h′
t = f ′([ct−1,C],h′

t−1) s.t.

ct−1 = argmax
c

softmax
c

(h′
t−1),

where f ′() denotes the conclusion decoder LSTM,
softmaxc the probability of word c given by a softmax layer,
ct the t-th conclusion decoded token, and ct the word em-
bedding of ct. The supplement decoder’s hidden state h′′

t is
computed in the same way with h′

t; however, it is updated in
the ensemble network described in the next subsection.

As depicted in Figure 1, the LSTM decoder processes
tokens according to question embedding Oc

q or Os
q , which

yields a bias corresponding to the sentence-type vector, C
or S. The output states are then input to the ensemble net-
work.

Ensemble network
The conventional encoder-decoder framework often gener-
ates short and simple sentences that fail to adequately an-
swer non-factoid questions. Even if we force it to generate
longer answers, the decoder output sequences become inco-
herent when read from the beginning to the end.

The ensemble network solves the above problem by (1)
passing the context from the conclusion decoder’s output se-
quence to the supplementary decoder hidden states via an at-
tention mechanism, and (2) considering the closeness of the
encoder’s input sequence to the decoders’ output sequences
as well as the closeness of the encoder’s input sequence to
the combination of decoded output sequences.



(1) To control the context, we assess all the information
output by the conclusion decoder and compute the conclu-
sion vector, Oc. Oc is a sentence-level representation that
is more compact, abstractive, and global than the original
decoder output sequence. To get it, we apply BiLSTM to
the conclusion decoder’s output states {ỹc

t}t; i.e., {ỹc
t}t =

{U · softmax(h′
t)}t, where word representation matrix U

holds the word representations in its columns. At time step
t, the BiLSTM encoder updates the hidden state by:

hc
t = [hc,f

t ,hc,b
t ]T s.t.

hc,f
t = f(ỹc

t−1,h
c,f
t−1), hc,b

t = f(ỹc
t+1,h

c,b
t+1),

where hc,f
t and hc,b

t are the hidden states output by the for-
ward LSTM and backward LSTM in the conclusion encoder,
respectively. It applies a max-pooling layer to all hidden vec-
tors to extract the most salient signal for each word to com-
pute the embedding for conclusion Oc. Next, it computes
the context vector cxt at the t-th step by using the (t−1)-th
output hidden state of the supplement decoder, h′′

t−1, weight
matrices, Va and Wa, and a sigmoid function, σ:

cxt = αtOc s.t. αt = σ(VT
a tanh(Wah

′′
t−1 +Oc)).

This computation lets our ensemble network extract a
conclusion-sentence level context. The resulting supplement
sequences follow the context of the conclusion sequence. Fi-
nally, h′′

t is computed as:

zt = σ(Wz[yt−1,T] +Uzh
′′
t−1 +Wa

zcxt + bz) (1)

l̃t = tanh(Wl[yt−1,T] +Ulh
′′
t−1 +Wa

l cxt + bl)

lt = it ∗ l̃t + ft ∗ lt−1

h′′
t = ot ∗ tanh(lt)

z can be i, f , or o, which represent three gates (e.g., input
it, forget ft, and output ot). lt denotes a cell memory vector.
Wa

z and Wa
l denote attention parameters.

(2) To control the closeness at the sentence level and
sentence-combination level, it assesses all the information
output by the supplement decoder and computes the supple-
ment vector, Os, in the same way as it computes Oc. That
is, it applies BiLSTM to the supplement decoder’s output
states {ỹs

t}t; i.e., {ỹs
t}t = {U ·softmax(h′′

t )}t, where the
word representations are found in the columns of U. Next,
it applies a max-pooling layer to all hidden vectors in order
to compute the embeddings for supplement Os. Finally, to
generate the conclusion-supplement answers, it assesses the
closeness of the embeddings for the question Oq to those for
the answer sentences (Oc or Os) and their combination Oc

and Os. The loss function for the above metrics is described
in the next subsection.

As depicted in Figure 1, the ensemble network com-
putes the conclusion embedding Oc, the attention param-
eter weights from Oc to the decoder output supplement
states (dotted lines represent attention operations), and the
supplement embedding Os. Then, Oc and Os are input
to the loss function together with the question embedding
Oq = [Oc

q,O
s
q].

Loss function of ensemble network
Our model uses a new loss function rather than generative
supervision, which aims to maximize the conditional prob-
ability of generating the sequential output p(y|q). This is
because we think that assessing the closeness of the ques-
tion and an answer sequence as well as the closeness of the
question to two answer sequences is useful for generating
natural-sounding answers.

The loss function is for optimizing the closeness of the
question and conclusion and that of the question and sup-
plement as well as for optimizing the closeness of the ques-
tion with the combination of the conclusion and supplement.
The training loss Ls is expressed as the following hinge loss,
where O+ is the output decoder vector for the ground-truth
answer, O− is that for an incorrect answer randomly chosen
from the entire answer space, M is a constant margin, and
A is set equal to {[O+

c ,O
−
s ], [O

−
c ,O

+
s ], [O

−
c ,O

−
s ]}:

Ls =
∑

Oa∈A

max{0,M−(cos(Oq, [O
+
c ,O

+
s ])−cos(Oq,Oa))}

The key idea is that Ls checks whether or not the con-
clusion, supplement, and their combination have been well
predicted. In so doing, Ls can optimize not only the predic-
tion of the conclusion or supplement but also the prediction
of the combination of conclusion and supplement.

The model is illustrated in the upper part of Figure 1;
(Oq,Oc,Os) is input to compute the closeness and se-
quence combination losses.

Training
The training loss Lw is used to check Ls and the cross-
entropy loss in the encoder-decoder model. In the follow-
ing equation, the conclusion and supplement sequences are
merged into one sequence Y of length T , where T =Nc+Ns.

Lw = α · Ls − ln

T∏
t=1

p(yt|Q,y1, . . . ,yt−1). (2)

α is a parameter to control the weighting of the two losses.
We use adaptive stochastic gradient descent (AdaGrad) to
train the model in an end-to-end manner. The loss of a train-
ing batch is averaged over all instances in the batch.

Figure 1 illustrates the loss for the ensemble network and
the cross-entropy loss.

Evaluation
This section evaluates our method in detail.

Compared methods
We compared the performance of our method with those
of (1) Seq2seq, a seq2seq attention model proposed by
(Bahdanau, Cho, and Bengio 2014); (2) CLSTM, i.e., the
CLSTM model (Ghosh et al. 2016); (3) Trans, the Trans-
former (Vaswani et al. 2017), which has proven effective for
common NLP tasks. In these three methods, conclusion se-
quences and supplement sequences are decoded separately



and then joined to generate answers. They give more accu-
rate results than methods in which the conclusion sequences
and supplement sequences are decoded sequentially. We
also compared (4) HRED, a hierarchical recurrent encoder-
decoder model (Serban et al. 2016) in which conclusion
sequences and supplement sequences are decoded sequen-
tially to learn the context from conclusion to supplement; (5)
NAGMWA, i.e., our neural answer generation model without
an attention mechanism. This means that NAGMWA does
not pass cxt in Eq. (1) to the decoder, and conclusion de-
coder and supplement decoder are connected only via the
loss function Ls. In the tables and figures that follow, NAGM
means our full model.

Dataset
Our evaluations used the following two CQA datasets:

Oshiete-goo The Oshiete-goo dataset includes questions
stored in the “love advice” category of the Japanese QA site,
Oshiete-goo. It has 771,956 answers to 189,511 questions.
We fine-tuned the model using a corpus containing about
10,032 question-conclusion-supplement (q-c-s) triples. We
used 2,824 questions from the Oshiete-goo dataset. On aver-
age, the answers to these questions consisted of about 3.5
conclusions and supplements selected by human experts.
The questions, conclusions, and supplements had average
lengths of 482, 41, and 46 characters, respectively. There
were 9,779 word tokens in the questions and 6,317 tokens in
answers; the overlap was 4,096.

nfL6 We also used the Yahoo nfL6 dataset, the largest
publicly available English non-factoid CQA dataset. It has
499,078 answers to 87,361 questions. We fine-tuned the
model by using questions in the “social science”, “society
& culture”, and “arts & humanities” categories, since they
require diverse answers. This yielded 114,955 answers to
13,579 questions. We removed answers that included some
stop words, e.g. slang words, or those that only refer to some
URLs or descriptions in literature, since such answers often
become noise when an answer is generated. Human experts
annotated 10,299 conclusion-supplement sentences pairs in
the answers.

In addition, we used a neural answer-sentence classi-
fier to classify the sentences into conclusion or supplement
classes. It first classified the sentences into supplements if
they started with phrases such as “this is because” or “there-
fore”. Then, it applied a BiLSTM with max-pooling to the
remaining unclassified sentences, A = {a1,a2, · · · ,aNa

},
and generated embeddings for the un-annotated sentences,
Oa. After that, it used a logistic sigmoid function to return
the probabilities of mappings to two discrete classes: conclu-
sion and supplement. This mapping was learned by minimiz-
ing the classification errors using the above 10,299 labeled
sentences. As a result, we automatically acquired 70,000
question-conclusion-supplement triples from the entire an-
swers. There were 11,768 questions and 70,000 answers.
Thus, about 6 conclusions and supplements on average were
assigned to a single question. The questions, conclusions,

Table 1: Results when changing α.

Oshiete-goo nfL6
α 0 1 2 0 1 2

ROUGE-L 0.251 0.299 0.211 0.330 0.402 0.295
BLEU-4 0.098 0.158 0.074 0.062 0.181 0.023

Table 2: Results when using sentence-type embeddings.
Oshiete-goo nfL6

NAGM w/o ste NAGM w/o ste
ROUGE-L 0.299 0.235 0.402 0.349
BLEU-4 0.158 0.090 0.181 0.067

and supplements had average lengths of 46, 87, and 71 char-
acters, respectively. We checked the performance of the clas-
sifier; human experts checked whether the annotation results
were correct or not. They judged that it was about 81% ac-
curate (it classified 56,762 of 70,000 sentences into correct
classes). There were 15,690 word tokens in questions and
124,099 tokens in answers; the overlap was 11,353.

Methodology
We conducted three evaluations using the Oshiete-goo
dataset; we selected three different sets of 500 human-
annotated test pairs from the full dataset. In each set, we
trained the model by using training pairs and input questions
in test pairs to the model. We repeated the experiments three
times by randomly shuffling the train/test sets.

For the evaluations using the nfL6 dataset, we prepared
three different sets of 500 human-annotated test q-c-s triples
from the full dataset. We used 10,299 human-annotated
triples to train the neural sentence-type classifier. Then, we
applied the classifier to the unlabeled answer sentences. Fi-
nally, we evaluated the answer generation performance by
using three sets of machine-annotated 69,500 triples and 500
human-annotated test triples.

After training, we input the questions in the test triples to
the model to generate answers for both datasets. We com-
pared the generated answers with the correct answers. The
results described below are average values of the results of
three evaluations.

The softmax computation was slow since there were so
many word tokens in both datasets. Many studies (Yin et al.
2016; Yang et al. 2016; Vinyals and Le 2015) restricted the
word vocabulary to one based on frequency. This, however,
narrows the diversity of the generated answers. Since diverse
answers are necessary to properly reply to non-factoid ques-
tions, we used bigram tokens instead of word tokens to speed
up the computation without restricting the vocabulary. Ac-
cordingly, we put 4,087 bigram tokens in the Oshiete-goo
dataset and 11,629 tokens in the nfL6 dataset.

To measure performance, we used human judgment
as well as two popular metrics (Sutskever, Vinyals, and
Le 2014; Yang et al. 2016; Bahdanau, Cho, and Bengio
2014) for measuring the fluency of computer-generated text:
ROUGE-L (Lin 2004) and BLEU-4 (Papineni et al. 2002).



Table 3: ROUGE-L/BLEU-4 for Oshiete-goo.

Seq2seq CLSTM Trans HRED NAGMWA NAGM
ROUGE-L 0.238 0.260 0.278 0.210 0.291 0.299
BLEU-4 0.092 0.121 0.087 0.042 0.147 0.158

Table 4: ROUGE-L/BLEU-4 for nfL6.

Seq2seq CLSTM Trans HRED NAGMWA NAGM
ROUGE-L 0.291 0.374 0.338 0.180 0.383 0.402
BLEU-4 0.081 0.141 0.122 0.055 0.157 0.181

ROUGE-L is used for measuring the performance for evalu-
ating non-factoid QAs (Song et al. 2017), however, we also
think human judgement is important in this task.

Parameter setup
For both datasets, we tried different parameter values and set
the size of the bigram token embedding to 500, the size of
LSTM output vectors for the BiLSTMs to 500×2, and num-
ber of topics in the CLSTM model to 15. We tried different
margins, M , in the hinge loss function and settled on 0.2.
The iteration count N was set to 100.

We varied α in Eq. (2) from 0 to 2.0 and checked the im-
pact of Ls by changing α. Table 1 shows the results. When α
is zero, the results are almost as poor as those of the seq2seq
model. On the other hand, while raising the value of α places
greater emphasis on our ensemble network, it also degrades
the grammaticality of the generated results. We set α to
1.0 after determining that it yielded the best performance.
This result clearly indicates that our ensemble network con-
tributes to the accuracy of the generated answers.

A comparison of our full method NAGM with the one
without the sentence-type embedding (we call this method
w/o ste) that trains separate decoders for two types of sen-
tences is shown in Table 2. The result indicated that the ex-
istence of the sentence type vector, C or S, contributes the
accuracy of the results since it distinguishes between sen-
tence types.

Results
Performance The results for Oshiete-goo are shown in
Table 3 and those for nfL6 are shown in Table 4. They show
that CLSTM is better than Seq2seq. This is because it incor-
porates contextual features, i.e. topics, and thus can gener-
ate answers that track the question’s context. Trans is also
better than Seq2seq, since it uses attention from the ques-
tion to the conclusion or supplement more effectively than
Seq2seq. HRED failed to attain a reasonable level of perfor-
mance. These results indicate that sequential generation has
difficulty generating subsequent statements that follow the
original meaning of the first statement (question).

NAGMWA is much better than the other methods except
NAGM, since it generates answers whose conclusions and
supplements as well as their combinations closely match
the questions. Thus, conclusions and supplements in the

Table 5: Human evaluation (Oshiete-goo).
CLSTM NAGM

(1) (2) (3) (4) (1) (2) (3) (4)
21 18 27 34 47 32 11 10

Table 6: Human evaluation (nfL6).
CLSTM NAGM

(1) (2) (3) (4) (1) (2) (3) (4)
30 3 27 40 50 23 16 11

answers are consistent with each other and avoid confu-
sion made by several different conclusion-supplement an-
swers assigned to a single non-factoid questions. Finally,
NAGM is consistently superior to the conventional atten-
tive encoder-decoders regardless of the metric. Its ROUGE-
L and BLEU-4 scores are much higher than those of CLSTM.
Thus, NAGM generates more fluent sentences by assessing
the context from conclusion to supplement sentences in ad-
dition to the closeness of the question and sentences as well
as that of the question and sentence combinations.

Human evaluation Following evaluations made by
crowdsourced evaluators (Li et al. 2016), we conducted hu-
man evaluations to judge the outputs of CLSTM and those
of NAGM. Different from (Li et al. 2016), we hired human
experts who had experience in Oshiete-goo QA community
service. Thus, they were familiar with the sorts of answers
provided by and to the QA community.

The experts asked questions, which were not included in
our training datasets, to the AI system and rated the answers;
one answer per question. The experts rated the answers as
follows: (1) the content of the answer matched the question,
and the grammar was okay; (2) the content was suitable, but
the grammar was poor; (3) the content was not suitable, but
the grammar was okay; (4) both the content and grammar
were poor. Note that our evaluation followed the DUC-style
strategy5. Here, we mean “grammar” to cover grammatical-
ity, non-redundancy, and referential clarity in the DUC strat-
egy, whereas we mean the “content matched the questions”
to refer to “focus” and “structure and coherence” in the DUC
strategy. The evaluators were given more than a week to
carefully evaluate the generated answers, so we consider that
their judgments are reliable. Each expert evaluated 50 ques-
tions. We combined the scores of the experts by summing
them. They did not know the identity of the system in the
evaluation and reached their decisions independently.

Table 5 and Table 6 present the results. The numbers are
percentages. Table 7 presents examples of questions and an-
swers. For Oshiete-goo results, the original Japanese and
translated English are presented. The questions are very long
and include long background descriptions before the ques-
tions themselves.

These results indicate that the experts were much more
satisfied with the outputs of NAGM than those of CLSTM.
This is because, as can be seen in Table 7, NAGM generated

5http://www-nlpir.nist.gov/projects/duc/duc2007/quality-
questions.txt



Table 7: Example answers generated by CLSTM and NAGM. #1 is for Oshiete-goo and #2 for nfL6.
ID Questions Answers generated by CLSTM Answers generated by NAGM
1 Many people say that a quarrel is one

example of a farewell in a love affair.
Recently we also often quarrel with
each other.
But within a few minutes we are rec-
onciled and even laughing about what
we quarreled about. Are such ”fre-
quent quarrels” good things to main-
tain the relationship between us? Or
should we stop quarreling with each
other so as not to farewell?

Why not ask somehow to tell
your feelings to your lover. He/she
may be able to get to know you.
(相手に気持ちを伝えることを、それと
なく聞いてみてはいかがでしょうか。相手に
も、あなたのことを知ってもらえるようにな
るかもしれません。)

I think that it is better not to do anything. You
should think positively about it without think-
ing too pessimistically. I think that it is im-
portant to communicate the feelings to your
lover; how you like or care about him/her espe-
cially when you are quarreling with each other.
(何もしないほうが良いと思います。あまり
悲観的な想像ばかりせずに、前向きに考えて
みてはいかがでしょうか。ケンカをした時こ
そ好きな気持ちや相手を大切に思う気持ち
を伝えることが大事なのだと思いますよ。)

2 How I can find my love? Feed him lots of fresh milk and change his dia-
per often. God hears prays that are sincere.

Well, in my opinion, u can’t get a lover without
any effort...u gotta do smth! Otherwise don’t
care for the results, just go ahead and do it.

longer and better question-related sentences than CLSTM
did. NAGM generated grammatically good answers whose
conclusion and supplement statements are well matched
with the question and the supplement statement naturally
follows the conclusion statement.

Generating answers missing from the corpus The
encoder-decoder network tends to re-generate answers in the
training corpus. On the other hand, NAGM can generate an-
swers not present in the corpus by virtue of its ensemble
network that considers contexts and sentence combinations.

Table 7 lists some examples. For example, answer #1 gen-
erated by NAGM is not in the training corpus. We think it was
generated from the parts in italics in the following three sen-
tences that are in the corpus: (1) “I think that it is better not
to do anything from your side. If there is no reaction from
him, it is better not to do anything even if there is opportu-
nity to meet him next.” (2) “I think it may be good for you to
approach your lover. Why don’t you think positively about it
without thinking too pessimistically?” (3) “Why don’t you
tell your lover that you usually do not say what you are
thinking. · · · I think that it is important to communicate the
feelings to your lover; how you like or care about him/her
especially when you are quarreling with each other.”

The generation of new answers is important for non-
factoid answer systems, since they must cope with slight dif-
ferences in question contexts from those in the corpus.

Online evaluation in “Love Advice” service Our ensem-
ble network is currently being used in the love advice ser-
vice of Oshiete goo (Nakatsuji 2018). The service uses only
the ensemble network to ensure that the service offers high-
quality output free from grammar errors. We input the se-
quences in our evaluation corpus instead of the decoder out-
put sequences into the ensemble network. Our ensemble net-
work then learned the optimum combination of answer se-
quences as well as the closeness of the question and those
sequences. As a result, it can construct an answer that cor-
responds to the situation underlying the question. In partic-
ular, 5,702 answers created by the AI, whose name is Oshi-

el (Oshi-el means teaching angel), using our ensemble net-
work in reply to 33,062 questions entered from September
6th, 2016 to November 17th, 2019, were judged by users of
the service as good answers. Oshi-el output good answers
at about twice the rate of the average human responder in
Oshiete-goo who answered more than 100 questions in the
love advice category. Thus, we think this is a good result.

Furthermore, to evaluate the effectiveness of the supple-
mental information, we prepared 100 answers that only con-
tained conclusion sentences during the same period of time.
As a result, users rated the answers that contained both con-
clusion and supplement sentences as good 1.6 times more
often than those that contained only conclusion sentences.
This shows that our method successfully incorporated sup-
plemental information in answering non-factoid questions.

Conclusion
We tackled the problem of conclusion-supplement answer
generation for non-factoid questions, an important task in
NLP. We presented an architecture, ensemble network, that
uses an attention mechanism to reflect the context of the
conclusion decoder’s output sequence on the supplement
decoder’s output sequence. The ensemble network also as-
sesses the closeness of the encoder input sequence to the
output of each decoder and the combined output sequences
of both decoders. Evaluations showed that our architecture
was consistently superior to conventional encoder-decoders
in this task. The ensemble network is now being used in the
“Love Advice,” service as mentioned in the Evaluation.

Furthermore, our method, NAGM, can be generalized to
generate much longer descriptions other than conclusion-
supplement answers. For example, it is being used to gen-
erate Tanka6, which is a genre of classical Japanese poetry
that consists of five lines of words, in the following way. The
first line is input by a human user to NAGM as a question,
and NAGM generates second line (like a conclusion) and
third line (like a supplement). The third line is again input to
NAGM as a question, and NAGM generates the fourth line
(like a conclusion) and fifth line (like a supplement).

6https://www.tankakenkyu.co.jp/ai/
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